Oxidative cyclizations in orthosomycin biosynthesis expand the known chemistry of an oxygenase superfamily.
نویسندگان
چکیده
Orthosomycins are oligosaccharide antibiotics that include avilamycin, everninomicin, and hygromycin B and are hallmarked by a rigidifying interglycosidic spirocyclic ortho-δ-lactone (orthoester) linkage between at least one pair of carbohydrates. A subset of orthosomycins additionally contain a carbohydrate capped by a methylenedioxy bridge. The orthoester linkage is necessary for antibiotic activity but rarely observed in natural products. Orthoester linkage and methylenedioxy bridge biosynthesis require similar oxidative cyclizations adjacent to a sugar ring. We have identified a conserved group of nonheme iron, α-ketoglutarate-dependent oxygenases likely responsible for this chemistry. High-resolution crystal structures of the EvdO1 and EvdO2 oxygenases of everninomicin biosynthesis, the AviO1 oxygenase of avilamycin biosynthesis, and HygX of hygromycin B biosynthesis show how these enzymes accommodate large substrates, a challenge that requires a variation in metal coordination in HygX. Excitingly, the ternary complex of HygX with cosubstrate α-ketoglutarate and putative product hygromycin B identified an orientation of one glycosidic linkage of hygromycin B consistent with metal-catalyzed hydrogen atom abstraction from substrate. These structural results are complemented by gene disruption of the oxygenases evdO1 and evdMO1 from the everninomicin biosynthetic cluster, which demonstrate that functional oxygenase activity is critical for antibiotic production. Our data therefore support a role for these enzymes in the production of key features of the orthosomycin antibiotics.
منابع مشابه
Regio and Stereodivergent Antibiotic Oxidative Carbocyclizations Catalyzed by Rieske Oxygenase-Like Enzymes
Oxidative cyclizations, exemplified by the biosynthetic assembly of the penicillin nucleus from a tripeptide precursor, are arguably the most synthetically powerful implementation of C-H activation reactions in nature. Here, we show that Rieske oxygenase-like enzymes mediate regio- and stereodivergent oxidative cyclizations to form 10- and 12-membered carbocyclic rings in the key steps of the b...
متن کاملP-70: Study of GTn-Repeat Expansion in Heme Oxygenase-1 Gene Promoter As Genetic Cause of Male Infertility
Background: The length of GT-repeats polymorphic region in the promoter of human Heme oxygenase-1 gene (HO-1) alters the level of its transcriptional activity in response to oxidative stresses. Decreased level of HO-1 protein in the seminal plasma has been reported to be associated with oligospermia and azoospermia in male infertility. This is the first study to investigate the association betw...
متن کاملHomocysteine Induces Heme Oxygenase-1 Expression via Transcription Factor Nrf2 Activation in HepG2 Cells
Background: Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcripti...
متن کاملThe Expression of Heme Oxygenase-1 in Human-Derived Cancer Cell Lines
Background: Heme oxygenase-1 (HO-1) is a cytoprotective and antiapoptotic enzyme, which has been involved in maintaining cellular homeostasis, and plays an important protective role by modulating oxidative injury. Up-regulation of (HO-1) has contributed to tumorogenicity of some cancers. In this study we investigated the expression pattern of the HO-1, in five different human-derived cancer cel...
متن کاملOrganophosphonate-degrading PhnZ reveals an emerging family of HD domain mixed-valent diiron oxygenases.
The founding members of the HD-domain protein superfamily are phosphohydrolases, and newly discovered members are generally annotated as such. However, myo-inositol oxygenase (MIOX) exemplifies a second, very different function that has evolved within the common scaffold of this superfamily. A recently discovered HD protein, PhnZ, catalyzes conversion of 2-amino-1-hydroxyethylphosphonate to gly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 37 شماره
صفحات -
تاریخ انتشار 2015